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EXECUTIVE SUMMARY 
Integrated energy systems (IESs) are essential for decarbonizing electricity 

and industrial sectors and fully exploiting these systems requires sophisticated 

planning, scheduling, and dispatching tools to maximize their socio-economic 

benefits. The Holistic Energy Resource Optimization Network (HERON) is a 

generic software plugin for the Risk Analysis Virtual Environment (RAVEN) to 

perform stochastic technoeconomic analysis of IES with economic drivers. This 

report summarizes the updates made to HERON 2.0. Particularly, we 

demonstrate one of the added features, Function-based Control Mechanics, by 

comparing a price-based dispatch strategy with the original perfect foresight 

baselines. Our case studies successfully demonstrate that the model is capable to 

incorporate artificial control algorithm into the dispatch of IES components. In 

addition, our results from the price-based strategy indicate that the control 

strategies of IES components are key to the economic and temporal performance 

of our model; therefore, more sophisticated dispatch strategies are required to 

improve the model performance. 
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RELEASE A PUBLIC VERSION OF HERON (HERON 
2.0) WITH IMPROVED ALGORITHMS FOR THE 

TREATMENT OF ENERGY STORAGE 

1. INTRODUCTION 

Integrated energy systems (IES) are essential for decarbonizing electricity and industrial sectors [1-3]. 

Innovation in design and utilization of these systems is required now in order to meet the Biden 

administration’s aggressive decarbonization goals [4]. These systems may consist of one or more nuclear 

reactors, renewable energy sources, and energy storage systems that are tailored in their design and 

operation to meet specific objectives, such as providing flexible electricity and providing heat for 

manufacturing processes [5,6]. The complex network structure of the IES, however, requires 

comprehensive examination of their cost-effectiveness, reliability, and resilience to extreme events before 

large-scale deployment. Although studies to date have been conducted to optimize the operation of 

electrical power systems [7-9], IES is a multi-carrier energy system that usually includes other forms of 

end-use demand, e.g., heat and cooling. Fully exploiting these systems requires sophisticated planning, 

scheduling, and dispatching tools to maximize their socio-economic benefits [10].  

The Holistic Energy Resource Organization Network (HERON) is a generic software plugin for the 

Risk Analysis Virtual Environment (RAVEN) developed by Idaho National Laboratory (INL)[11] to 

perform stochastic technoeconomic analysis of IES with economic drivers [12]. HERON is developed to 

drive optimization via economic drivers such as system cost minimization, profitability, and net present 

value (NPV) maximization. It can be used to construct workflows solving complex resource allocation 

problems that involve multiple forms of energy carriers. In addition, HERON leverages the synthetic 

history training and generation tools, sampling workflows, code Application Programming Interfaces 

(API), and optimization schemes. At each time point in a dispatch optimization, HERON attempts to 

calculate the most optimal usage of each component in the system.  

Since its last stable release in 2020, several additions have been made to HERON, ranging from  

user-facing features to optimizations and new features. We summarize these improvements and their 

impact on HERON users in this section. The following is a short list of the improvements: 

• Validator granted access to metadata: Allows Validators access to run metadata, including macro 

index, micro index, cluster information, etc. 

• Debug mode for Example Dispatch: Adding the “debug” node to the Case node in a HERON XML 

input allows a custom, simplified run that only performs a select set of dispatches and produces plots 

of dispatch decisions. This allows users to carefully review some examples of dispatch optimization 

to ensure the system is working as expected before performing full-scale analyses. See, for example, 

“HERON/tests/integration_tests/mechanics/debug_mode/heron_input.xml” 

• Activity-type ValuedParam: Allows users to use the “activity” of a component as the source of values 

for CashFlow entries. This is particularly useful for the CashFlow Driver, where often the amount of 

resources consumed or produced by a component leads directly to a CashFlow such as variable 

operations and maintenance costs or sales profits. See, for example, 

“HERON/tests/integration_tests/mechanics/pyomo_options/heron_input.xml” 

• ROM-type Source: Allows Reduced-Order Models (ROMs) trained by RAVEN to be used as  

fixed-source data types, such as pricing models or demand generators. See, for example, 

“HERON/tests/integration_tests/mechanics/ROM_source/heron_input.xml” 

• Manual Compilation on Windows: Using a batch file, the HERON manual can now be compiled from 

the LaTeX source on Windows machines. 
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• Automatic optimization path plotting: After running an “opt” mode HERON case, generic figures 

plotting the optimization path taken by the optimization variables is produced and saved in the 

working directory. These figures are a series of plots sharing an x-axis (“iterations”), each of which 

show accepted, rejected, and rerun optimization points, with successive accepted points linked 

together. The objective (e.g., NPV) is also plotted as a function of optimizer iteration. 

• Function-based Control Mechanics: Allows a user to specify control strategies for storage units. By 

default, HERON still uses a perfect foresight governance strategy; this offers an alternative for 

control via custom Python strategy, machine learning or artificial intelligence algorithms, etc. For 

example, see “HERON/tests/integration_tests/mechanics/storage_func/heron_input.xml” 

• Round-Trip Efficiency (RTE): Allows storage units to include a “loss” factor for round-trip resource 

acquisition and release. HERON simulates this loss as occurring in equal parts as the resource is 

absorbed and as it is released, multiplying by the square root of the RTE at each stage to apply loss. 

See, for example, “HERON/tests/integration_tests/workflows/storage/heron_input.xml” 

The remainder of this document focuses on the Function-based Control Mechanics as the primary 

improvement in this release of HERON. The goal of using HERON in this demonstration is to optimize 

the dispatch strategy of the IES components and subsystems under volatile market electricity prices with 

the simultaneous constraint that energy balance and conversion efficiencies must be satisfied. We will 

demonstrate the new Function-based Control Mechanics by comparing the default HERON strategy with 

perfect foresight with a user-defined price-based control strategy. Note that the price-based control 

strategy accounts for uncertainties associated with imperfect foresight into the future, which can be 

integrated with real-world operation of IES. 

2. STUDY CASES 

 

Figure 1. Schematic overview of the studied system. 

The example system in this study is shown in Figure 1. The system consists of a steam generator, a 

steam storage device, an electricity generator that takes in steam and outputs electricity. Table 1 lists 

techno-economic parameters of the constituent components. Note that the capacity of the steamer is 

varied over [1, 100] in the outer HERON loop to determine the optimal value. The generated electricity 

can be sold to electricity markets at either a fixed price or a variable price. We include the electricity 

market with variable prices to demonstrate the new Function-based Control Mechanics, which allow a 

user to apply a customized control algorithm to the IES components. In this study, we will design a  

price-based dispatch strategy based on the variable electricity price and apply it to the steam storage 

system. The modeled time horizon spans three years from 2015 to 2017, and we generate two samples 

(identified by 0 and 1) based on historical prices from New York Independent System Operator 

(NYISO) . The price profiles are presented in Figure 2. 



 

3 

Table 1. Techno-economic parameters of components of the studied IES. 

Symbol Notes Value Unit 

𝑥𝑆 Capacity, steamer [1,100] MW 

𝑥𝐸  Capacity, electricity generator 500 MW 

𝜂𝐸  Efficiency, electricity generator 0.5 – 

𝑥𝑆𝑆 Capacity, steam storage 100 MWh 

𝑥𝑀𝐹  Capacity, electricity market (fixed price) 2 MW 

𝑥𝑀𝑉 Capacity, electricity market (variable price) 200 MW 

𝑟 Discount rate 0.08 – 

– Inflation 0 – 

– Tax 0 – 
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Figure 2. Electricity prices of the variable electricity market. 
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3. DISPATCH OF STORAGE DEVICES 

3.1 Baseline: Perfect Foresight 

The baseline case determines the dispatch schedules of (in this demonstration) the steam storage 

system by maximizing the total revenue of electricity sales and by assuming perfect foresight (PF) of 

electricity prices into the future, which means the operator knows the exact future electricity prices in 

advance. Note that the dispatch optimization aims to motivate the correct choice of technologies in 

HERON analyses; thus, assuming perfect foresight, while not realistic in real world, this serves to 

correctly motivate technology deployment in the outer optimization of HERON. Ideally, the optimization 

model should determine the dispatch schedule based on the electricity prices of the entire year–i.e., 8760 

hours–to guarantee global optimality; however, considering 8760 hours would lead to an increased 

complexity of the optimization problem and drastically increase the model solving time. Therefore, we 

traditionally consider a reduced dispatch horizon of 24 hours and solve the reduced dispatch model 365 

times. Note that the 365 dispatch models are solved sequentially to ensure the continuity of energy levels 

in the steam storage system. All cases in this study are run on a compute node with 12 cores and 128 GB 

of memory from INL’s High Performance Computing platform. The time consumption and net present 

values (NPV) of the runs with both 8760-h and 24-h dispatch window are summarized in Table 2. By 

applying the 24-h dispatch window, the total revenue is reduced by only 0.05%, but the time consumption 

is reduced by over 90%. 

Table 2. Summary of NPV and time consumption from both the 8760-h PF and 24-h PF. 

Dispatch window 

(h) NPV (ID: 1) ($) Percentage 

Time 

(s) NPV (ID: 2) ($) Percentage 

Time 

(s) 

8760 12,581,762.04 100.00% 875.1 12,660,397.67 100.00% 876.0 

24 12,575,441.52 99.95% 71.1 12,654,514.54 99.95% 68.3 

 

We further examine the relationship between electricity prices (𝜋) and net changes of storage level 

(𝑑𝐸) in Figure 3. Note that 𝑑𝐸𝑡 = 𝐸𝑡 − 𝐸𝑡−1, where 𝐸𝑡 is the storage level at the end of time 𝑡. Across all 

years, higher electricity prices tend to result in negative 𝑑𝐸, which indicates dispatching steam to generate 

electricity, whereas lower electricity prices are often associated with positive 𝑑𝐸, i.e., storing steam. This 

observation suggests that the model is more likely to sell electricity to make profits under greater 

electricity prices and also is more likely to fill the steam storage system to avoid losses when electricity 

prices are low. 

A closer look at Figure 3 suggests that price thresholds might be used to guide the dispatch of the 

steam storage system. For example, when the Sample ID = 0, 𝑑𝐸 ≤ 0 when 𝜋 ≥ 27 $/MWh across all 

three years, implying that the model will stop charging when electricity price is greater than 27 $/MWh; 

on the other hand, 𝑑𝐸 ≥ 0 when 𝜋 ≤ 8 $/MWh, indicating that the model will stop discharging when 

electricity price is lower. Similarly, the charging and discharging price thresholds when the  

Sample ID = 1 are approximately 28 and 7 $/MWh, respectively. When the electricity prices are in 

between the charging and discharging price thresholds, the model could charge, discharge, or do nothing. 

This observation implies that we can design a price-based strategy to operate the steam storage system. 
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Figure 3. Scatter plots showing relationship between electricity prices (𝜋) and net changes of storage level 

(𝑑𝐸) in the steam storage system. The dispatch horizon is 8760 hours. Note that dE > 0 indicates storing 

steam and dE < 0 indicates dispatching steam. 

3.2 Price-based Dispatch 

Although we can achieve global optimality by assuming perfect foresight, in real world, the dispatch 

schedules must be determined in the absence of future prices. The lack of perfect foresight introduces 

uncertainties in the model and often negatively impacts the profitability. To simulate real-world dispatch 

of energy storage systems, we adopt a simple price-based dispatch strategy. This strategy determines the 

dispatch schedule based on price thresholds: When the market electricity price is greater than a price 

threshold, steam is dispatched from the storage device to the electricity generator, whereas if the market 

electricity price is smaller than a price threshold (this threshold can be different from the previous 

threshold), steam is stored into the storage device. Figure 4 shows the flowchart of the price-based 

dispatch with an upper (𝜋𝑢𝑝) and a lower price (𝜋𝑑𝑛) threshold.  
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Figure 4. Flowchart of the price-based dispatch for the steam energy storage system. Note that 𝜋 

represents the electricity price time series, 𝑡 denotes time, 𝜋𝑢𝑝 and 𝜋𝑑𝑛represent the upper and lower 

price thresholds, respectively. 

Finding adequate price thresholds are key to the performance of the price-based dispatch method. As 

Figure 3 suggests, there are clear price thresholds of charging and discharging in the baseline cases; 

however, without knowing future electricity prices in advance, it is challenging to select the optimal price 

thresholds. Therefore, we examine the cumulative distribution functions (CDF) of electricity prices and 

select a set of percentiles as the price thresholds. Each time, we select a pair of upper and lower 

percentiles (𝛼𝑢𝑝 > 𝛼𝑑𝑛) to derive the discharging (or upper, 𝜋𝑢𝑝) and charging (or lower, 𝜋𝑑𝑛) price 

thresholds using the following equation: 

𝜋𝛼 = 𝐹−1(𝛼) (1) 

where function 𝐹−1 is the inverse of the CDF, which can be derived from history data. Figure 5 

shows that the CDFs of all years, and Table 3 summarizes the selected percentiles and corresponding 

electricity prices used in this study.  

START 

Read 𝜋, calculate 

𝜋𝑢𝑝 and 𝜋𝑑𝑛, 𝑡 =
0 
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Table 3. Selected percentiles and corresponding prices ($/MWh). 

Percentile 

Sample ID = 0 Sample ID = 1 

2015 2016 2017 2015 2016 2017 

5th 11.28 11.15 11.02 11.56 11.44 11.33 

25th  14.61 14.46 14.30 14.77 14.62 14.47 

50th  16.98 16.80 16.63 17.05 16.87 16.69 

75th  19.49 19.30 19.10 19.61 19.41 19.21 

95th  23.12 22.93 22.74 23.11 22.89 22.69 

 

  

  

  

Figure 5. Frequency distributions and CDFs of electricity prices 𝜋 of all years in this study. 
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After the charging/discharging status is determined, the next step is to determine 𝑑𝐸, i.e., the change 

of storage level, which represents the amount of steam that will be charged/discharged. We first consider 

a simple method, where 𝑑𝐸 is only determined by the capacities of all upstream and downstream 

components, i.e., the steamer and electric generator, and remaining capacity in the storage system. Where 

𝑑𝐸+ denotes the amount of steam charge and 𝑑𝐸−denotes discharge, they can be expressed as follows: 

𝑑𝐸+ = min(𝑥𝑆 ⋅ Δ𝑡, 𝑥𝑆𝑆 − 𝐸𝑡) (2) 

𝑑𝐸− = −min((𝑥𝐸 − 𝑥𝑆) ⋅ Δ𝑡, 𝐸𝑡) (3) 

where Δ𝑡 denotes the size of a time slice, 𝐸𝑡 denotes the storage level, 𝑥𝐸 , 𝑥𝑆, and 𝑥𝑆𝑆 represents the 

capacities of electric generator, steamer, and steam storage, respectively. Note that the capacities of 𝑥𝐸  

and 𝑥𝑆 are in MW, and the unit of 𝑥𝑆𝑆 is MWh. Given the above definition, 𝑑𝐸 can be expressed as a 

two-segment piece-wise linear function of the electricity price 𝜋𝑡: 

𝑑𝐸 = {
𝑑𝐸−, ∀𝜋𝑡 > 𝜋𝑢𝑝

𝑑𝐸+, ∀𝜋𝑡 < 𝜋𝑑𝑛
 (4) 

The above equation implies that 𝑑𝐸 = 0 when the price 𝜋𝑡 ∈ (𝜋𝑑𝑛, 𝜋𝑢𝑝), which means that the 

storage level remains constant when the price is in the middle. We further introduce a three-state dispatch 

strategy, where 𝑑𝐸 is linearly correlated with the percentile of 𝜋𝑡 when the price is between 𝜋𝑑𝑛 and 𝜋𝑢𝑝; 

therefore, 𝑑𝐸 can be expressed by a three-segment piece-wise linear function of 𝜋𝑡: 

𝑑𝐸 = {

𝑑𝐸−, ∀𝜋𝑡 > 𝜋𝑢𝑝

𝛼𝑡−𝛼
𝑑𝑛

𝛼𝑢𝑝−𝛼𝑑𝑛
⋅ 𝑑𝐸− +

𝑑𝐸+, ∀𝜋𝑡 < 𝜋𝑑𝑛

𝛼𝑢𝑝−𝛼𝑡

𝛼𝑢𝑝−𝛼𝑑𝑛
⋅ 𝑑𝐸+, ∀𝜋𝑡 ∈ (𝜋𝑑𝑛, 𝜋𝑢𝑝) (5) 

where the price percentile 𝛼𝑡 is given by the price CDF: 𝛼𝑡 = 𝐹(𝜋𝑡). The graph of this function is 

shown in Figure 6. 

 

Figure 6. The graph of the three-state dispatch function. 

By applying the price-based dispatch strategy, the results are presented in Figure 7 and Figure 8. By 

expressing total revenues as percentages of the revenue from the 8760-h PF baseline, Figure 7 compares 

the total revenues against the values in Table 2. Not surprisingly, the price-based dispatch strategy results 

in smaller total revenues than the baseline. This is because without perfect foresight, the price-based 

dispatch is an approximation to the baseline, where the price-based decision-making process can be 

viewed as additional constraints to the original optimization problem. Since adding additional constraints 

tightens the feasible region of an optimization problem, the price-based dispatch will only result in less 

revenues than the baseline. 
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A comparison of total revenues across different pairs of 𝛼𝑢𝑝 and 𝛼𝑑𝑛 shows that the total revenue is 

higher when 𝛼𝑢𝑝 ∈ [50%, 75%] and 𝛼𝑑𝑛 ∈ [25%, 50%]. In addition, it also suggests that using a 24-h 

dispatch window typically results in greater revenues than the 8760-h dispatch window when the same 

dispatch strategy is used. For example, when the three-state dispatch strategy is used, the maximum total 

revenues with a 24-h dispatch window are 97.41% (ID = 0) and 97.43% (ID = 0), greater than 97.36% (ID 

= 0) and 97.39% (ID = 1) when an 8760-h dispatch window is used. Similarly, when the two-stage 

dispatch strategy is used, the maximum total revenue with a 24-h dispatch window is 98.58% (ID = 0), 

greater than 97.74% with an 8760-h window. Note that in the other sample (ID = 1), using a 24-h dispatch 

window results in smaller total revenue (97.76%) than using an 8760-h window (97.83%). This suggests 

that more samples are required to compare the performance of using different dispatch windows.  

 

Figure 7. Objective functions (total revenues) when the price-based dispatch strategies are applied, 

expressed as percentages of the baseline with an 8760-h dispatch window. 
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The time performance of the price-based strategies is shown in Figure 8. Similar to the PF baseline, 

using an 8760-h dispatch window results in significantly longer solving time than using a 24-h dispatch 

window. In addition, the price-based strategies require additional implementation time and double the 

time consumption in the PF baseline. With an 8760-h dispatch window, it takes 1,720 and 1,740 seconds 

to implement the 2-state and 3-state price-based strategies, respectively. The 24-h dispatch window 

reduces the time consumption by over 90%, but still requires around 120 seconds to complete, which 

almost doubles the 24-h PF baseline. 

 

Figure 8. Time consumption of the price-based dispatch cases. 

4. CONCLUSIONS 

This report summarizes the updates made to HERON 2.0. Particularly, we have demonstrated 
Function-based Control Mechanics by comparing a price-based dispatch strategy with the perfect 

foresight baselines. Our case studies draw the following conclusions. 

First, the solution time can be reduced substantially by using a reduced dispatch window size. By 

reducing the dispatch window from 8760 hours to 24 hours, the solution time has been reduced by up to 

90%, and the total revenue is reduced by less than 1%. This suggests that we can use 24-h dispatch 

window without compromising the economic performance. 

In addition, by examining the relationship between the electricity prices and the dispatch decisions in 

the PF baselines, we show that price thresholds can be used to guide the dispatch of the steam storage 

system. Furthermore, we design a simple price-based dispatch strategy and use different percentiles of 

prices as the thresholds. Our results indicate that total revenues from the price-based dispatch strategies 

are smaller than the PF baselines and the time consumptions are longer.  

The price-based strategy indicates that the model is capable of incorporating artificial control 

algorithm into the dispatch of IES. Our results from the simple price-based strategy imply that the control 

strategies of IES components are key to the economic and temporal performance of our model; therefore, 

more sophisticated dispatch strategies are required to improve the model performance. Future work will 

include development of data-driven methods, such as using machine learning or reinforcement learning. 

These methods will depend on training artificial intelligence (AI) on intensive data sets of decisions with 

perfect foresight into future uncertainties. 
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